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ABSTRACT 

We de t e rmine  t h e  Sn x Sm-cocharac te r  X,~,m of the  a lgebra  MI,1 (E)  and  

prove t h a t  t h e  T2-ideal of  i ts  g raded  ident i t ies  is gene ra ted  by t he  polyno-  

mia l s  Yl Y~ - Y~ Yl a n d  zl z2 z3 + z3 z2 z l .  

Z2-graded algebras and their graded identities have been used in [1] and [4] to 

study the structure of varieties of associative algebras over a field F of charac- 

teristic zero. 

In [2], Berele defined a S,, x S,,,-cocharacter X,,,,,, for Z2-graded algebras and 

he related this cocharacter to the ordinary S,,+,,-cocharacter (for P.I.-algebras). 

Moreover, in [7], Regev used these last results to obtain a description of codi- 

mensions of the algebras M~,t(E), which play an important role in the theory of 

P.I.-algebras. More precisely, as proved by Kemer in [2], any non-trivial prime 

variety is generated by any one of the algebras, M,(F), M,(E), Mk,~(E) which 

are defined as follows. 

Let A be an algebra over F and let M,(A) denote the n x n matrices over A. 

Let E be the Grassman algebra of a countable dimensional vector space over F.  

By considering the length of the basis elements of E we have that E = E0 (9 El ,  

where E0 is the vector space spanned by the elements of even length and E1 is 

spanned by the elements of odd length. Given k, l > 0 we denote by Mk,z(E) the 

following subalgebras of Mk+l (E): 

M.,,(E) = { (A B) I A E M.(Eo), D E M,(Eo), B, C are respectively } 
C D k x l and l x k matrices, both with entries in Ex " 
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In this paper we will determine the Sn x Sm-cocharacter X-,m of the algebra 

MI,I(E) and prove that the T2-ideal of its graded identities is generated by the 

polynomials [Yl, Y2] = YlY2 -Y2Yl and zlz2zs + zsz2zl. 
As a consequence of our theorem and using a result of Popov [5], we show 

that MI,I(E) is equivalent to E ® E, that is they satisfy the same polynomial 

identities. 

We remark that this last result was obtained by Kemer in [4], as a consequence 

of his structure theory for varieties of algebras, but our proof does not make use 

of the above structure theory (another proof of this result is contained in [8]). 

Definitions and preliminary results 

Following the definitions of Kemer, an algebra A is Z2-graded if A = A0 + A1, 

where A0,A1 are subspaces of A satisfying: 

AoAo + A1A1 C_ Ao and AoA1 + A1Ao C_ A1. 

Now, let F{X)  be the free algebra over the field F generated by a countable 

set X. As in [4] we represent X in the form X = Y U Z where Y and Z are 

countable disjoint subsets of X. 

~'0 will denote the subspace of F{X)  generated by the monomials of even 

degree with respect to Z; similarly ~'1 will denote the subspace of F{X } generated 

by the monomlals of odd degree with respect to Z. 

An ideal I of F{X)  is a T2-ideal if it is invariant under all F-endomorphisms 

of F{X} such that ~(~'0)_ Y'0 and ~(~'1) C_ ~'1. 

A polynomial f ( y l , - - - , 9 , , z l , . . .  ,z,n) is a graded identity of a Z2-graded al- 

gebra A = A0 + A1 if f (a l , . . . ,a , ,b l , . . . ,b , , )  = 0 for all al , . . . , a ,  E .4o and 
bl , . . . ,bm E A1. 

The set I = T2(A) of all graded identities of A is a T2-ideal of F{X).  
Let V,~,m be the space of all multilinear polynomials of degree n + m in the 

variables Yl,.. .  ,yn ,z l , . . .  ,zm and let for a T2-ideal I,I,,,,~ = IN V,,m. Clearly, 

In,,n becomes a Sn x Sm-submodule of V,,m if, as usually, we define 

(0", ~')/(]/1,..., Un, Zl,..., Zm) :/(U.(1),..., U.(.), Z~r(1),""", Z,(m)), 

for all (a,~r) e S ,  x S,~ and f (y l , . . .  ,lln,Zl,... ,Zm) ~. Vn,m. 
We denote by X.,,,,(I) (Xm,.(A)) the S,~ x S,n-character of the quotient module 

V,,,,./I.,,., and by c. , , . (I)  (c. , , . (a))  its dimension over F. 
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It follows from the theory of representations of the symmetric group that 

X.,~(Z)=X.,~(A)= ~ m~,A~]® [.1, 
pl-m 

where [$] ® [/z] denotes the irreducible S,~ × Sin-character given by the tensor 

product of the irreducible characters [)q, [/z] corresponding to the partitions $,/z 

of n and m respectively (see [3]). 

Moreover, mx,~ # 0 if and only if there exist a A-tableau T1, a/~-tableau T2 

and some monomial M ( y l , . . . ,  y , ,  z l , . . . ,  z , , )  of Vn,rn such that the polynomial 

eT~ eT2M(y l , . . . ,  y , ,  Z l , . . . ,  zm) is not a graded identity of A. 

Here eT~ (i = 1, 2) denotes the essential idempotent element of F S ,  (FSm) 

given by eT~ = ~aeRr,  )'~eVr,(--1) ~ar,  where RT~, CT~ are the subgroups of 

Sa (Sin) fixing respectively the rows and the columns of Ti. 

The graded  ident i t ies  of  M2(F) 

We consider the algebra A = M2(F) with the non-trivial grading 

and let I be the T2-ideal M its graded identities. 

We start by considering a suitable subset of V.,,. which leads to a basis of 

V. , , . / I . , , . .  More precisely we have the following definition. 

De/~nitlon 1: For m > 0, let (j)  -- { j l ,  j ~ , . . . ,  J['/51 } be a subset of { 1 , . . . ,  ra } of 

order [ra/2] and let (i) = {il, i2,. . .} be its complement in {1, . . . ,  m 1. Moreover, 

for q = 0 , 1 , . . . , n  let (t) = { t l , . . . , t q / b e  a s u b ~ t  of { 1 , . . . , n }  of order q, and 

let (s) = {sl, s~, . . . l  be its complement in {1, . . . ,  n}. | 

We separately write in increasing order all integers occurring in the distinct 

sets (i), (j), (t), (s) and we put 

M(t),(j) = M ( t ) , ( j ) ( ] ] l , . . .  , ]/,, Z l ) . . . ,  Zm) 

f Yt, Yt2 "'" Yt~ zil Ysl "" "Ys,_, z jl zi2 zj~ . . .  zilm/2lzi[,~12] m even 
= [ Yt, Yt2 Yt+zitYsl Ys._+zitzi2zj2 Zi[m/2]+l m odd 

We have: 
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LEMMA 1: The 2n([~]) monomia/s M(0,(j)are llnearlyindependent modulo In,re. 

Proof'. We assume m even (the proof of the odd case is very similar). 

Let {en,  e12, e21, e22} be the standard basis of M2(F) and 

z i  , ~ z.i = a i e l 2  q-  b i e 2 1 ,  Y i  ' ) Y i  -~ o t i e l l  -1- f l i e 2 2  

be the most general graded substitution. 

For each monomial, we have 

M(0,(j)02x,. . . ,  y , , z l , . . . ,  ~',,) = 

Ottx " " o l t J ] s l  " " f s . _ , a i l  b j t  a i 2 b j 2  " " " a i t , * 1 2 l b j t . 1 2 ]  e l l  

+ f t l  " ' "  f i t ,  o t , a " "  O r , . . _ ,  b i t  a j r  bi2 a j 2 " ' "  b i t , .  121 ayt-y 21 e22. 

Let f = ~(t),(j) A(o,(J)M(t),(J)(lh,'", !h,, z ] , . . . ,  zm) be a graded identity of 

M2(F); for a fixed (j) = { j] , j2 , . . . }  we specialize in the substitution 

a i r  = " ' "  = ai t ,*12 ] = b i t  : " ' "  = bj[,*121 = 1 

and 

bit = " ' "  = bi t ,~/2  ] = aja . . . .  = a j t , ~ / 2  ] = O. 

Hence, for all a l , . . .  , an , i l l , . . .  ,fin E F, we have 

0 = f ( o 1 , ' ' ' , ~ / n , g l , ' ' ' , ~ r n )  = ~ A ( t ) , ( j ) o t t t ' " o t ,  , ~ t t ' ' ' ~ s . _ , £ 1 1 .  

(t) 

Since the characteristic of F is zero it follows that  A(O,(j) = 0 for all (t), and this 

proves the Lemma. | 

Now we can prove our first result about the graded identities of M2(F). 

LEMMA 2: I is the Tz-ideM generated by yly2 - y2yl and Z l Z 2 Z  3 - -  Z 3 Z 2 Z  1.  More- 

( ' ] )  forn > O, m > O. over era0(/) = 1 and e . , , . ( / )  = 2" [_? _ 

Proof." Let J be the T2-ideal of F { X }  generated by ylY2 - y21tl and zlz2z3 - 

z3z2zl. Since these polynomials are graded identities d M2(F) it follows that  

J C__ I ,  and so c . , . , ( J )  _> c., , .(1), for all n, m >_ 0. 

We remark that  Jr.,0 = J.,0 as A0 is commutative and non-nilpotent. Therefore 

Vn,o/l.,o is the one-dimensional S .  module with character [(n)]. 

Now we assume m > O. 
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Since J is a T2-ideal then y i M  - My i  E J ,  for each monomial M having 

even degree in the z / s .  This implies that V.,,. is spanned modulo d.,m by 

the monomials uo(y)zi~ul(y)zi3 . . .zi , , , ,  where u0(y) and ul(y) are monomials 

(eventually 1) in Yl , . . . ,  Y. in which the yi's occur in increasing order. 

Now we consider the right action of the symmetric group Sm on the vector 

space V0,m of all multilinear polynomials in z l , . . . ,  Zm. This action is defined as 

follows: 

(Zil . . .  Zim)O "-1  = Zi~,(1) ' ' '  Zi¢(m), 

that  is a acts on the monomial M = M ( z l , . . . ,  zm) by changing the order of the 

zi's. Hence the polynomials 

z t t " "  zt,. (1 - (i, i + 2)) = z t t " "  zt, zt,+l zt,+2 • • • zt., - z t~ . . ,  zt,+2 zt,+~ z , , . . ,  z , .  

are in the T2-ideal J ,  and so zt: . . .  zt,~ - zt~ . . .  zt,~ (i, i + 2) mod. J ,  for all i. 

Let G be the subgroup of Sm generated by the involutions (i, i + 2), with 

i = 1 , . . . , m - 2 ,  then ztt . . . z , ~ g  = ztl ""z t ,~  rood. J ,  for all g E G. Since G 

is the direct product of the symmetric groups G1 and G2 acting respectively on 

odd and even digits, then, for each monomial M = M ( z l , . . .  , zm)  of V0,m, we 

can apply a suitable g E G and separately write the zi's occurring in the even 

and odd position in M in increasing order; moreover M - M g  E J.  

Since J is a T2-ideal, it follows from the previous argument that  V,,,~ is spanned 

modulo J, ,m by the monomials M(0,(j) which were defined above. Therefore 

On the other hand by Lemma 1, 2" ([~])  < Cn,m(-T). 

This inequality together with the previous implies 

c . , , . ( I )  = c . , , . ( J )  = 2" ( m ) 

and moreover, as J C_ I,  I.,m = d,,,= for all n, m _> 0. Since I and J are T2-ideals 

of F { X }  and char. F = 0, this suft~ces to conclude the proof. | 

We remark that  this last result together with Lemma 1 shows that  the set 

{M(,),(j) + I,,m} is a basis of V,, ,m/I . ,m for all n > 0 and m > 0. 

Next we will examine more dosdy  the S .  x Sin-structure of V. ,m/I . , ,~ .  

Let q be a fixed integer with 0 < q < n, assume ra > 0; and let Wq be the 

S .  x Sm-submodule of Vn,m/In,m generated by Y l " "  yqZlYq+l • -- ~/.Z2Zs.. .  Zm + 

/'It, lit * 
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We identify the characters [~],[#] associated to the partitions A,# with the 

corresponding Young diagrams; with this notation we have 

LV.MMA 3: For all s , t  wi th  0 _< t _< q* = min{q,n - q} and 0 _< s _< [m/2], the  

irreducible Sn x Sra-character 

# - -  n - -  t 4..4 4--- m - -  8 . .-4 

is a componen t  of x.,m(Wq). 

Proof." In order to prove the Lemma it suffices to exhibit for each couple of 

diagrams 

I I I 
I I 

~--t---* ~--s--+ 

a couple of tableaux T1,T2 such that the corresponding element 

(eT~ eT2)yl "'" yqzlyq+x " " y ,  z2zs " " zm of V,.m 

is not a graded identity of M2(F) (see introduction). 

This is obtained in the following manner. 

Suppose, for simplicity of notations, q* = q and m even (all other cases can be 

treated in a similar way). For t < q, s <_ Ira/2] we consider the following Young 

tableaux 

~-- n - t  
T~ = I q +  l l q +  2 l ' " l q + t l t  + l l ' " l q l q + t  + l J ' " l n ]  

[ 1 [ 2 1---1 t [ 
~-- t ---} 

t-- 

a n d  let R T' = ~ ,~eRr ,  a, C T' 

Let 

m ~ s  

8 ""4 

= )-]~,acr,(-1)'%r, for i = 1,2. 

M = M(y,  z)  = 111"'" yqzlyq+l "'" ynz2z3" '"  Zm, 

M1 = MI(y, z) = ~1 ""yqzlyq+l  "'" y.z2, 

M~ = M2(y, z) = Yl"'" yqz2yq+l "" " y . z l ,  
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and 

then 

moreover 
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f ( z )  = [za, z 4 l " "  [z2s-1, z 2 , l z 2 s + l  " "  z m ,  

eT ,  eT3 M = R T~ R T2 C T~ C T2 M ,  

C T 2 M = M ~ ( y , z ) f ( z ) - M 2 ( y , z ) f ( z ) .  

Now let ~ e Cr, and let (i) = ( ix , . . .  , i t }  C { 1 , . . . , t }  be the ordered set of 

integers of  the second row of Tx which are moved by 7r; tha t  is 

zc = ( i l , q  + i l ) ( i 2 , q  + i 2 ) . . . ( i , - , q  + i, .) .  

Then  (-1)"~rM~(y,  z ) f ( z )  is congruent  modulo  I , ,m to 

(-1)~YJt " '"  YJ~Yt+ I " " "YqYq+it " '"  Yq+i,  Zl  Yi ,  " '"  Y i ,  

Yq+/t " " Yq+J~ Yq+t+ l " " " y , z 2 f (  z )  

where { j l , . . . j r )  = { 1 , . . . , t ) -  ( i l , . . . , i ~ }  and j l  < " "  < j r ;  in the same way 

( - 1 ) ~ M 2 ( y , z ) f ( z )  is congruent  modulo  I , , m  to  

( -1) ry /~  " '" Y j ~ Y t + I  "" "YqYq+i, " ' "  Yq+ir z 2 Y i t  " ' "  Y i .  

Yg+j l  " '"  Yq+J~ yq+t+l " " • y n Z l  f ( z ) .  

Hence c T t C T 2 M  = c T ' ( M ~  - -  M 2 ) f ( z )  is congruent,  modulo  I , ,m,  to 

t 

g ( y l , . . . , Y n ,  Z l , . . . , Z m ) =  E E (--1)r 
r=O l<_ix<...<i~<_t 

( ( Y j l  " " " Yje Yt+I " " YqYq+ ix " '"  Yq+ i ,  zx  Yit  " '"  Yi ,  Yq+ Jl " " Yq+ Jv Yq+ t + l " " Yn z2 ) 

- ( Y i ,  " '"  YJ~ Yt+ l " '"  YqYq+ it  " '"  Yq+ i.  z 2 y i t  " '"  Yi .  Yq+ i ,  " ' "  Yq+ J. Yq+,+l" • • y ,  z l  ) ) 

. f ( z )  

where, as above, 

{ j , , . . . , j v ) = { 1 , . . . , t } - { i l , . . . , i r }  a n d  j l  < " " < j e .  

Now in g ( y l , . . . , y , , z l , . . . , z m )  we identify Yl  = Y2 . . . . .  Y , ,  Y t + l  = Y,+2 = 

• "" - -  Yn ,  z2 -- z4 = .--  - Z2s a n d  a l s o  z l  = z3 = . . .  = z2s_l ~ Z2s+l ~ Z2s+2 

o...7-ZIR. 
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In this way we obtain the polynomial 

(0 g T , , T ~ ( Y l , Y t + l i Z l , Z 2 )  = E [ l " ~ r [ . . i - r . . q + r - t ~  . r .  n - q - r ~  t , - -~] \ Y l  Y t + I  ~ l Y l Y t + l  z2 
I"=--0 

. i - - r . q + r - - t  z . r .  n- -q--r  z ~l z Z ] S - - l z " - - 2 s  
- -  Y l  Y t + l  2:q19/-l-1 1 ) [  1~ 2J 1 " 

A standard argument shows that  

gTx,T~ (Yl, Yt+l, Zl, Z2) e I ~ (eTl eT~)Yl " " " yqZl Yq+l"" ynz2z3"'" Zm E In,m 

(See [6, sections 1,3] for details). 

Let Yl ~ .~1 = CXlell + / ~ 1 c 2 2 ,  Yi+ l  ~ f f t+l  = o t2e l l  J r /~2e22 ,  z i  ~ 7.i be a 

graded substitution of the variables with elements of M2(F).  One has 

gT,,T,(~,,y,+,,=I,~) = ~  t , , - ) ' - "  ~ ' ~ " ~  ~" 
r=O 

f j t - -r  f~q+r--i o [ r _ n - - l - - r _  % - 1 s - m - - I s  
Jr  P1 H2 lot  2 ~221 " [51, ZiJ z I • 

I f  ~.I "~- e l2  Jr  C21 a n d  ~.2 ~-- e21, then  [£,i,~,2]a~ n- ia  i s  a.q i n v e r t i b l e  m a t r i x  o f  

M2(F), hence gTt,T~(fll, fit+l, Zl, ~'2) = 0 implies 

~ ( t ' ~ ,  l~,a,_,^ q+,_to,A._q_, 

Since char F = 0 this is impossible. Hence 

gT~,T~ (YI, Yt+Z, zl, z2) ¢ I 

and this completes the proof. I 

LEMMA 4: 

q" [,-12] 
x.,,.(w,) = E E 

t=O #=0 

where q* = rain{q, n - q}. 

Proof." 

f o r  a l l  oti , t~ i E F .  

--+ ~- m -  s -+ 

I 
I 

l-'- S .----~ 

Let d be the degree of the Sn x 5",.-representation associated to 

. - -  n - t  ~ ~ m - s  

I t , E E  J @ I 
t=O a=O 
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By the hook formula (see [3]) the dimension of the irreducible representation 

associated to Young diagram 

I 
J 

~¢~11(~-~) 
~ow ~ = e ~  ~ i o o  o~ ~ we ~ ¢  ~ - 0 / ~ 1 ~  ( ~ -  ~ )  =/,~/for 

( - ) ( - )  p = 0 , . . . , N ; a n d s o d =  4o [m/~] • 

On the other hand W~ is spanned over F by the elements 

Y,,O)"" Y~(q)z,co)Y~(q+l)"" y,(n)z,~(2)'" z~(,O + I , , , , ,  (a, ~r) E S. × S,,. 

Moreover, as shown in the proof of Lemma 2, each of these is equal to one of 

the elements M(0,(j)(yl,. . .  ,yn,zl , . . .  ,z,,) + In,,,, with (t) = {t l , . . .  ,tq} and q 

is fixed. 

Since M(0,(i)(yl, . . .  , Yn, z l , . . . ,  z,,) + In,m are in the basis of Vn,,,/In,,, then 

dimW, = (~)([ra/21)' moreover, since ( i ) =  (n-q) and q * =  min{q ,n -q} ,  one 

has dim Wq = d. 

Therefore the result follows by Lemma 3. | 

Notice that the basis of Vn,ra/In,m given in the proof of Lemma 1 and Lemma 2 

splits in the basis of the submodules Wq which we defined above, for q = 

0,1, . . .  ,n; therefore Vn,m/In,ra = SWq and we have: 

LEMMA 5: Let A = M2(F) with the non-trivial grading. Then 

Xn,o(A)=ll '"  I I  

and, for m > 0, 

~-- 1 2 - - ~  --4 ~-- r a m 8  
t,,/2l [,,,/21 [ 

x . , . ( A )  = E E ( -  + 1 - 2~1 1 
r=O s~-.O 

Proof: L e t / b e  the T2-ideal of graded identities of A. As we said above Vn,o/In,o 
is the one-dimensional S,-module with character 

4--- n --~ 

I ] "-- i l  
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while for m > 0, V.,.dri.,.~ = ~Wq. Hence by Lemma 4 

n-t ~ ~ m-s 

q=0 t=O s=O 

where q* = rain{q, n - q}. 

I 
I 

Now for a fixed r, with 0 < r < In/21, there exist precisely (n + 1 - 2r) values 

of q, with 0 <_ q < n, such that r < rain{q, n - q}, namely q = r, r + 1 , . . . ,  n - r. 

Thus, for m > 0, one has 

~-- n -- r -.-r ~-- m -- 8 -.-4 

x . , . ( A )  = E E (-  + 1 - 2~) I® I 
=0 o--0 I I 

The graded identities of MI,I(E)  

First we recall some results of [4] in order to prove our main result about MI,I(E).  

Let A = A0 + Ax be a Z2-graded algebra, and let /1 be the T2-ideal of its 

graded identities. In [4, Lemmas 1, 4] it is proved that the T2-ideal/'2 associated 

to the Z2-graded algebra B = A0 ® E0 + A1 ® Ex satisfies the condit ion/2 = I~, 

where • is defined as in [4, p.362]. 

Moreover, for all n,m >_ O, one has IaOVn,m = (-/'10Vn,m)*, and * acts linearly 

on V.,,. in the following way: 

Let M = M ( y l , . . .  , ! t . , zx , . . .  ,z.~) be a monomiai in Vn,m. Denote the order 

in which the zi's occur in M by zil,zi2,.. .  ,Zim. Then M* = ( -1) '~M where Ir 

is the pe rmu ta t i on  (ill:::imm). 
We have 

LEMMA 6: Let A be the one-dimensional S. × Sin-module which affords the 

S .  × Sin-representation given by (~,r) , , ( - 1 ) ' .  Then for every S .  × S,,, 

-submodule N of V.,ra we have 

(i) N* is a S .  × S.,-submodule of V.,,., 

(ii) N* -~ N ®F A. 

Proof: By the definition of the action of * on Vn,m it follows that ((or, r )M)*  = 

(-1)~(~, r) .  M*, for ail (~, r) • s .  × sm ~ d  for ~U mono~als  M of V.,m. Since 
• acts linearly on V.,m this implies the result. | 
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As a consequence we obtain (see also [2, Lemma 6]) 

LEMMA 7: Let A = Ao+A1 be a Z2-graded a/gebra, and let B = Ao®Eo+AI®E1 

the graded tensor product of A with E. 

~.~Xn,m(A) = E~ , /~ [ .~ ]  ® [•] then Xn,m(B) = E~/2~,.[ ,,~] ® [~'], where . '  /S 

the conjugate partition of #. 

Proo£" Let I be the T2-ideal of graded identities of A and decompose V.,m as 

the direct sum of the S,, x Sm-submodules In,m, N. 

Since * acts linearly on V.,m we have 1/.,.. = (I.,m)* ~ N*. As we said above, 

(In,m)* --~ (In V.,m)* = I* n Vn,m, hence by Lemma 6 and [4, Lemma 4] we have 

X.,m(B) = X.,m(N*) = X.,m(N ®F A) 

= ( ~  m~,,[A] ® [/~1)® ([(n)l ® [(-1)m]) = ~ m~,,[Al ® [/~'l 

by 6.6 of [3]. | 

We are ready to prove 

THEOREM 1: Let d be the T2-ideal of graded identities of Ml,l(E), then 

(1) J is generated by  yly2 - Y2Yl and ZlZ2Zs + z s z2 z l ,  

(2) cn,o(J) 1 and c . , m ( J ) =  2-  f o r .  z 0, m > 0, 

(3) ~-- n 

x.,0(J)=ll . . .  I I  

and, for m > 0, 

Proof: 

~-- n - - r  ,-+ 
[n/2][m/2] 2r)]  "'" ]® ] 

x.,m( a) = E E ( .  + 1 -  "" I 
r=0 s ~ O  4-- r --+ 

m - 3  

l 
Let A = M2(F) with the non-trivial grading A0, A1 where 

tT S 

then M1,1 (E) is isomorphic to the graded tensor product A0 ® E0 + A1 ® El. 
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Therefore (2) and (3) follow from Lemmas 5 and 7. Moreover by Lemma 4 of 

[4] J = I*, where I is the T2-ideal of graded identities of A. By definition, I* is 

the Tz-ideal generated by all multilinear polynomials f*,  with f E I. By Lemma 

2, I is generated by y ly2  - y2Yl and  z l z2z3  - z3z2z l ;  hence, as chafF = 0, any 

multilinear polynomial f of I is a linear combination of the polynomials a0 (al a2 - 

a2 al)a3 and b0 (bl b2 b3 - ba b2 b~ )b4, where ai, bj are multilinear monomials of F { X  } 

and moreover ai Egr0, bj E ~ I  f o r / =  1,2 and j = 1,2,3. 

We remark that if a, b are monomials of F{X} ,  linear in the disjoint ordered 

subsets { z i t , . . . , z i , } ,  {zA, . . . , z / .  } of Z, then (ab)* = (-1)~'a*b *, where a is 
(tt . . . t , t ,+t. . . t ,+,~ • • the permutation , it...irjt . . . . . .  j ,  ~ and  t l , t 2 , . . . , t r + s  are the integers t l , . . . , t r ,  

j~ , . . .  , j ,  written in increasing order. 

Moreover, if r and s are both even then the permutations (tt...trtr+t...tr+s~ and  
x i t " ' i , . j t  . . . . . .  j .  t 

(h"'tot,+t'"t.+,~ have the same sign while if r, s, u are odd then the permutations j l ' " j ,  i l  . . . . . .  i t  ," 

and  

t l "'" t r t r  + l "'" tr+ str+ s+ l "'" tr+. s+ u ~ 

il  " . i , v l  . . . . . .  v , j l  . . . . . . . . .  3~ / 

tl • "" t u t ~ + l  • • • t u + s t u + s + l  " " • t ~ + s + r ~  

Jl  " " j , , v l  . . . . . .  v° i l  . . . . . . . . .  i,. ,/j 

have opposite sign. 

This impfies that (ao(axa2 - a2al )aa )* = 4-a*(a~ a~ - a~a~)a~ and also 

( b o ( b l b 2 b 3  - b 3 b 2 b l ) b 4 ) *  = - l - b ~ ( b ~ b ~ b ;  - b ; b ~ b ; ) b  i 

which are both in the T2-ideal generated by y ly2  - Y 2 Y l  a n d  z l z2za  + z s z u z l .  This 

completes the proof. | 

For the next result we need to recall the following definition: 

Two P.I.-algebras A, B are equivalent if they satisfy the same polynomial iden- 

tities. 

As a consequence of Theorem 1 we have 

T H E O R E M  2 :  M I , I ( E )  a n d  E ® E are equivalent .  

Proof.." Let P and Q be the T-ideals of the polynomial identities of M I , I ( E )  and  

E ® E  respectively. By a result of Popov [5], Q is generated by [zl, z2, [z3, x4], zb] 

and [[z~, z2], z]]. Since these polynomials are identities of M I , ~ ( E )  then Q c_ P.  

In order to prove the reverse inclusion, we remark that E ® E is a g2-graded 

algebra with grading A0 = E0 ® E0 + E1 ® El,  A1 = E0 ® E1 + E1 ® g0. With 
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respect to this grading, the polynomials 9192 - Y~Yl and ZlZ2Z3 + z3z2zl are 

graded identities of E ® E. 

Therefore, it follows from Theorem 1 that any graded identity of MI,I(E) is 

also a graded identity of E ® E. 

Now, let Vn be the space of all multilinear polynomials of degree n in Zl, • • • , Zn 

and A = A0 + A1 be a Z2-graded algebra. 

Let S , T  be a partition of {1 ,2 , . . . , n} ,  then, as in [21, lS,T(A) will be the 

subspace of all f ( z l , . . . ,  z , )  G Vn which vanish under all substitutions xi,  , ai, 

with ai E Ao whenever i E S and ai E A1 whenever i E T. 

As quoted in [2], since A = A0 + A1, a multilinear polynomial f ( z l , . . .  ,zn)  

will be an identity for A if and only if it vanishes under every homogeneous 

substitution; that is f is an identity for A if and only if f ( z ~ , . . .  ,xn) G IS, T(A) 

for every {S, T) partition of {1, 2 , . . . ,  n}. 

As we showed above IS, T(M,,I(E))  C IS, T(E @ E), hence we must have e ,  C__ 

Qn for all n >__ 0. Since chafF = 0 then P C_ Q and we are done. | 
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