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ABSTRACT
We determine the Sy X Sp-cocharacter xn,m of the algebra M; ;(E) and
prove that the T3-ideal of its graded identities is generated by the polyno-
mials y1y2 — yay1 and 212223 + 232321

Z,-graded algebras and their graded identities have been used in [1] and [4] to
study the structure of varieties of associative algebras over a field F' of charac-
teristic zero.

In [2], Berele defined a S, X Sy-cocharacter xn,m for Zs-graded algebras and
he related this cocharacter to the ordinary S,4m-cocharacter (for P.I.-algebras).

Moreover, in [7], Regev used these last results to obtain a description of codi-
mensions of the algebras Mg ((F), which play an important role in the theory of
P.L-algebras. More precisely, as proved by Kemer in [2], any non-trivial prime
variety is generated by any one of the algebras, Myn(F), Mn(E), My (E) which
are defined as follows.

Let A be an algebra over F' and let M,,(A) denote the n x n matrices over A.
Let E be the Grassman algebra of a countable dimensional vector space over F.
By considering the length of the basis elements of E we have that E = Ey @ E4,
where E; is the vector space spanned by the elements of even length and E; is
spanned by the elements of odd length. Given k,! > 0 we denote by M;,i(E) the
following subalgebras of My41(E):

Mii(E) = AB\ | A€ My(E,), D € Mi(Ey), B,C are respectively
WUEIZANC D/ | k x 1 and I x k matrices, both with entries in Ey |
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In this paper we will determine the S, X Sy,-cocharacter xn,m of the algebra
M, 1(E) and prove that the Ty-ideal of its graded identities is generated by the
polynomials {y1,%2] = y1%2 — y211 and 212323 + 232221

As a consequence of our theorem and using a result of Popov [5], we show
that My 1(E) is equivalent to E @ E, that is they satisfy the same polynomial
identities.

We remark that this last result was obtained by Kemer in [4], as a consequence
of his structure theory for varieties of algebras, but our proof does not make use

of the above structure theory (another proof of this result is contained in [8]).

Definitions and preliminary results

Following the definitions of Kemer, an algebra A is Z,-graded if A = Ao + A1,
where Ag,A; are subspaces of A satisfying:

AgA¢ + A1A; C Ap and AgA; + 4140 C A

Now, let F{X} be the free algebra over the field F generated by a countable
set X. As in [4] we represent X in the form X = Y U Z where Y and Z are
countable disjoint subsets of X.

Fo will denote the subspace of F{X} generated by the monomials of even
degree with respect to Z; similarly F; will denote the subspace of F{X} generated
by the monomials of odd degree with respect to Z.

An ideal I of F{X} is a Tp-ideal if it is invariant under all F-endomorphisms
n of F{X} such that n(Fo) C Fo and n(F1) C F1.

A polynomial f(y1,---,¥n,21,...,2m) is a graded identity of a Z;-graded al-
gebra A = Ag + A; if f(e1,...,an,b1,...,bm) = 0 for all ay,...,a, € Ag and
biyoo . bm € As.

The set I = T(A) of all graded identities of A4 is a T;-ideal of F{X}.

Let Va,m be the space of all multilinear polynomials of degree n + m in the
variables ¥1,...,Yn,21,-..,2m and let for a Ty-ideal I, I, m = I N Vy m. Clearly,
I,,,m becomes a Sy, X Sp-submodule of V,, ., if, as usually, we define

(U,W)f(yl)- ey Yny 21,y '1zm) = f(ya(l)" s Ya(n)r Zx(1)s - -+ ’zr(m))’

for all (o,7) € Spn X Sm and f(y1,...,¥n,21,-++,%m) € Va,m.
We denote by xn,m(I) (Xm,n(A)) the Sy x Sp-character of the quotient module
Va,m/In,m, and by ¢nm(I) (¢n,m(A)) its dimension over F.



Vol. 80, 1992 GRADED IDENTITIES 325

It follows from the theory of representations of the symmetric group that

Xn,m(I) = Xn,m(4) = Z mu(A] @ [ul,
Abn

pkm
where [\] ® [p] denotes the irreducible S, x Sm-character given by the tensor
product of the irreducible characters [A], [1] corresponding to the partitions A, s
of n and m respectively (see [3]).

Moreover, mj , # 0 if and only if there exist a A-tableau Tj, a pu-tableau T3
and some monomial M(y1,...,Yn,21,...,2m) of Vy m such that the polynomial
er, e, M(y1y. .-y Yny 21, .-, 2m) is ot a graded identity of A.

Here er; (i = 1,2) denotes the essential idempotent element of FS, (FSm)
given by er; = 3, R, E”GCT'_(—].)"O’W, where Rr;, Cr; are the subgroups of
Sn (Sm) fixing respectively the rows and the columns of T;.

The graded identities of M;(F)
We consider the algebra A = M,(F) with the non-trivial grading

al 0b
e oer) ()

and let I be the T;-ideal of its graded identities.
We start by considering a suitable subset of V,, m which leads to a basis of

Va,m/In,m. More precisely we have the following definition.

Definition 1: Form > 0, let (§) = {j1,72,.--,Jim/2)} be asubset of {1,...,m} of
order [m/2] and let (i) = {i1,¢2,...} be its complement in {1,...,m}. Moreover,
for g =0,1,...,nlet () = {t1,...,t,} be a subset of {1,...,n} of order ¢, and
let (s) = {s1,352,...} be its complement in {1,...,n}. |

We separately write in increasing order all integers occurring in the distinct

sets (i), (7), (¢), (s) and we put

My, i) = M,y (Y15, Uns 215+ - Zm)
_ JYnYn Y Fn Ve Yeno o201 Zin %y T Zign 2y Ziim gy T EVER
Tl Y Yo ZisYsy * " " Ysn_g241%i2%j5; """ Zilm /2141 m odd

We have:
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LEMMA 1: The2® ([%) monomials M) (j) are linearly independent modulo I m.

Proof: We assume m even (the proof of the odd case is very similar).
Let {e11, €12, €21, €22} be the standard basis of M3(F) and

zi — Z; = aje1z + bieas, yi — ¥i = ajern + Piexs

be the most general graded substitution.

For each monomial, we have

M,y F1s- -1 TnaZ1y 2 Zm) =
Qg Qg By o ﬂ’n-.ail bj, ai, bj: ot ai[m/z]bftm/z] n
+ B, - Bryas, - as, biyaj bisag, b, 5 5 €22

Let f = Z(,)’(j) Ay, ()M, (h(W1,-+ -, ¥ny 21,- -+, Zm) be a graded identity of
M,(F); for a fixed (j) = {j1,Jz2,...} we specialize in the substitution

iy =0 = Gigy = bjy = = by =1

and

biy =--+= bi[.../a] =aj, = =, =0.

Hence, for all ay,...,a5,B81,...,8s € F, we have

0= f(ﬁl,...,g,.,il,...,fm) = ZA(i),(j)atl ---at'ﬂ,l ---ﬂ,n_'eu.
0]

Since the characteristic of F is zero it follows that Ay (;) = 0 for all (t), and this
proves the Lemma. |

Now we can prove our first result about the graded identities of My(F).

LEMMA 2: I is the T,-ideal generated by y1ya — yay1 and 212923 — 232221. More-
over cno(I) =1 and cum(I) =2" ([;]) forn 20, m > 0.

Proof: Let J be the Ty-ideal of F{X} generated by y1y2 — y231 and z12223 —
23732;. Since these polynomials are graded identities of M,(F) it follows that
J C I, and 50 cp m(J) 2 cn,m(l), for all n,m > 0.

We remark that In o = Jn 0 88 Ag is commutative and non-nilpotent. Therefore
Va,0/Inp is the one-dimensional S, module with character [(n))].

Now we assume m > 0.
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Since J is a Ty-ideal then y;M — My; € J, for each monomial M having
even degree in the 2;’s. This implies that V, » is spanned modulo J, » by
the monomials uo(y)zi, u1(y)zi, - - - 2i,,, where ug(y) and u1(y) are monomials
(eventually 1) in y1,...,yn in which the y;’s occur in increasing order.

Now we consider the right action of the symmetric group S, on the vector
space Vo m of all multilinear polynomials in 21,...,2,. This action is defined as
follows:

(% 2im )0 = 20y (1) iy
that is o acts on the monomial M = M(zy,...,2,;) by changing the order of the

z;’s. Hence the polynomials
zty 2, (L= (4,0 +2)) = 24, -+ 2y Ztig1%i40 "ty T 2ty T Rty Bty Bty Bty

are in the Tp-ideal J, and s0 2¢, -+~ 2¢,, = 2¢, -~ 24,,(3,¢ + 2) mod. J, for all 4.

Let G be the subgroup of S,, generated by the involutions (i, + 2), with
t=1,...,m—2 then 2z, -+~ 2¢,,g = 21, -+~ 2,, mod. J, for all ¢ € G. Since G
is the direct product of the symmetric groups G, and G, acting respectively on
odd and even digits, then, for each monomial M = M(zi,...,2m) of Vo,m, we
can apply a suitable g € G and separately write the z;’s occurring in the even
and odd position in M in increasing order; moreover M — Mg € J.

Since J is a Tj-ideal, it follows from the previous argument that V}, , is spanned

modulo J;, m by the monomials M(y ;) which were defined above. Therefore

(1) 2 (7))
On the other hand by Lemma 1, 2" ([%) < en,m(1).
This inequality together with the previous implies

cser= ()

and moreover, as J C I, Iy m = Jn,m for all n,m > 0. Since I and J are T-ideals
of F{X} and char. F =0, this suffices to conclude the proof. [ |

We remark that this last result together with Lemma 1 shows that the set
{Ms),(j) + In,m} is a basis of V;, ;/Inm for all n > 0 and m > 0.

Next we will examine more closely the S, X Sp-structure of Vi m/In,m.

Let g be a fixed integer with 0 < ¢ < n, assume m > 0; and let W, be the
Sn X Sm-submodule of V, /I m generated by yy - Yg21Yg41 - Yn2223* Zm +

Inm.
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We identify the characters [A],[u] associated to the partitions A,u with the

corresponding Young diagrams; with this notation we have

LEMMA 3: For all s,t with 0 <t < ¢* = min{g,n — ¢} and 0 < s < [m/2], the

irreducible Sy, X Sy-character

- n—1t — — m-38 —
] 1
T ®

is a component of xn,m(Wy).

Proof: In order to prove the Lemma it suffices to exhibit for each couple of
diagrams

— n—1 — — m-—-s —

| |
[ |

T — 38—

a couple of tableaux T, such that the corresponding element

(emem )1 YgZ1Ygt1** YnZ223 - Zm Of Vum

is not a graded identity of M2(F) (see introduction).

This is obtained in the following manner.

Suppose, for simplicity of notations, ¢* = ¢ and m even (all other cases can be
treated in a similar way). For t < ¢, s < [m/2] we consider the following Young

tableaux
— n—t -
Ty= g+ g F2[- g+ +1]--Jqlg+¢+1]--[n]
1 2 {--- ] t
— t —
— m—3 -
Tp=[1]3][--[2s —1[2s + 1] [m]
214]---] 2s
« 3 —s

and let RT: = EGERT; o, CTi = Enecr'.(_l)'”’ fori=1,2.

Let
M= M(y’ Z) = Y1 Yg21Yg4l - Yn2223 0" Zm,

My = Mi(y,2) = y1- YgZ1Yg+1 " YnZ2,
M; = My(y,2) = y1 -+ YgZaYq41 * * " Yn21,
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and
f(z) = [Za, 24] cese [z2,_1,22,]zz,+1 e Zm,
then
CTIGT,M = RTlRTchICTzM,
moreover

CT:M = Ml(ya z)f(z) - Mz(y, z)f(z)
Now let 7 € Cr, and let (i) = {i1,...,ir} C {1,...,} be the ordered set of
integers of the second row of T which are moved by =; that is
= (ilaq + il)(i2’q + 22) o (iraq + i")'
Then (—1)"wM;(y, 2) f(2) is congruent modulo I » to
(—l)ryjl Y Ve YeYgdin t o Ygdi A1Yi ot i,
Yotir ** YgtioYgtt41°* Ynz2 f(2)
where {j1,...5v} = {1,...,t} = {é1,...,%-} and j; < --- < j,; in the same way
(-=1)*xM2(y, 2) f(z) is congruent modulo I, y to
(=1)Wi Vi Yer1 " YaYgrin ** Yatin 22Vis " Vi
Ygt+in ** YarioVgreer -+ Yn21 f(2)-
Hence CT:CT: M = CTi(M; — M) f(z) is congruent, modulo I m, to
t
g(yl,...,yn,zl,...,zm)=z Z (-1

r=01<H << &t
(s - Ui Yo - YaYain *** Yabin 21831 ** YirYabis = Yobio Yght41 " Yn22)

—(Uj Y Y1 YgYgrin *** Ygbin 22Yiy Vi Ygbin * " Yabs, Yghth1 " Yn 21 ))

f(2)
where, as above,
{jl,...,j,,}={1,...,t}—{i1,...,ir} and J1 < < Jy

Now in ¢(y1,--,¥Yn,21,--,2m) We identify y1 = y2 = - =y, Y41 = Yt42 =
= Yp, 2y T 2= e = 2, and also 21 =23 =00 = 2941 = 22441 = 22442 =

= Zm
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In this way we obtain the polynomial

t
t -
ng,Tz(ylayt+1:zlaz2) =Z (r)(—l)r( ; rytqi-lr tzlny:+lq rzz
r=0

—-r_ gt+r—t

n—g—r -1 _m-2
—yl Ye41 Z2ylryt+1q zl)[zl,z'g]" zZr

A standard argument shows that

9TV V1,21, 22) €T & (emen, )y - YgZ1¥g+1 ***Yn2223 2 € Inm

(see [6, sections 1,3] for details).
Let y1 — 41 = onen + Preaz, Y41 = fr41 = ozenn + Paenz, 2z Zibe a
graded substitution of the variables with elements of M,(F'). One has

t
— = t - - -
97,1 (I1, Ye+1, 21, 22) =Z ( )( 1)" ( i q+r tﬂl ;e

r=0
t— ~t —gr
+ 8B afag "ez2) - [71, 2] Z] R0
If z; = e12 + €21 and Z; = en, then [71,2]°Z"~?* is an invertible matrix of
MQ(F)$ hence ng,Tg(yl,yt-}-l,Z],Zz) =0 1mphes

t

Z ( )( )t madt T iprgr T = for all a;, B; € F.

r=0

Since char F = 0 this is impossible. Hence

ngyTz(yIY yH—l’zlaZ?) ¢ I

and this completes the proof. n

LEMMA 4:
.[/2]¢—n—t—> — m-—38 —
¢ [m
Xnm(Wg) =3 20 lj® T |
=0 s=0 P — S

where ¢* = min{g,n — ¢}.
Proof: Let d be the degree of the S, X Sp-representation associated to

— n—t — - m-—8 —

{m/2]
E |l® iJ

i

-
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By the hook formula (see (3]) the dimension of the irreducible representation

associated to Young diagram

is ("3) (1- 7).

Now by an easy induction on p we have Y %_, ("3') (1 ~ Nl-%) = (1: ) for all
p=0,...,N;andsod = (q':)({m"/'Z])’

On the other hand W, is spanned over F by the elements

Yo(1) " " Yo(g) Zx(1)¥o(g+1) """ Yo(m)Zn(2) *** Za(m) + Inmy  (0,7) € Sp X Sin.

Moreover, as shown in the proof of Lemma 2, each of these is equal to one of
the elements M(s) (j)(¥1,-+-,¥n» 21+ -+ 1 Zm) + Inm, With (t) = {t1,...,4,} and ¢
is fixed.

Since My),(;) (Y15 1¥ns 214+ .+, Zm) + In,m are in the basis of V,, ;u/In,m then
dim W, = ('q’) ([m"/'Z]); moreover, since (;’) = (n':q) and ¢* = min{q,n ~ ¢}, one
has dim W, = d.

Therefore the result follows by Lemma 3. |

Notice that the basis of V;;,;m/In,m given in the proof of Lemma 1 and Lemma 2
splits in the basis of the submodules W, which we defined above, for ¢ =
0,1,...,n; therefore V;, ;n/In,m = ®W, and we have:

LEMMA 5: Let A = M,(F) with the non-trivial grading. Then

xnald) =T 1]

and, form > 0,

[n/2] {m/2] s m=Ss
Xnm(A)= 3 Y (n+1-2r) lg |
r=0 =0 r l
—r— — 8 —

Proof: Let I be the T,-ideal of graded identities of A. As we said above V;, 0/In0

is the one-dimensional S,-module with character

— n —

[ T]
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while for m > 0, Vi m/Inm = ®W,. Hence by Lemma 4

— n-t — - m-—8 —
n ¢ [m/2) ] 1
Xnm(4) = 3 —e .

=0 t=0 =0
! ’ —1— —s5—

where ¢* = min{¢q,n - ¢}.
Now for a fixed r, with 0 < r < [n/2], there exist precisely (n + 1 — 2r) values
of ¢, with 0 < ¢ < n, such that r < min{g,n — ¢}, namely ¢g=r,r +1,...,n—r.

Thus, for m > 0, one has

[n/2] [m/2) s r-r=- = mes
Xem(A)= 3 L (n+1-27) —e —

The graded identities of M 1(E)

First we recall some results of [4] in order to prove our main result about M; 1(E).

Let A = Ag + A; be a Zy-graded algebra, and let I; be the T;-ideal of its
graded identities. In [4, Lemmas 1, 4] it is proved that the T;-ideal I; associated
to the Z,-graded algebra B = Ag ® Eg + A ® E; satisfies the condition I; = I},
where * is defined as in (4, p.362].

Moreover, for all n,m > 0, one has LNV, ;m = (11 NV m)*, and * acts linearly
on Vy m in the following way:

Let M = M(y1,...,Yn,21,...,2m) be & monomial in V,, ;. Denote the order
in which the z;’s occur in M by z;,,z,,...,2,,. Then M* = (-1)"M where =
is the permutation (::’;)

We have

LEMMA 6: Let A be the one-dimensional S, X Sy-module which affords the
Sn X Sm-representation given by (o,7) — (—1)". Then for every S, X Sm
-submodule N of V;, ;n we have

(1) N*isa S, X Sm-submodule of Vy, i,

(i) N*=NQ®rA.
Proof: By the definition of the action of * on V, , it follows that ((o,7)M)* =
(—=1)7(o,7)- M*, for all (o,7) € Sy X Sy and for all monomials M of Vy, 1. Since

* acts linearly on Vj s this implies the result. |
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As a consequence we obtain (see also [2, Lemma 6])

LEMMA 7: Let A = Ap+A; be a Z,-graded algebra, and let B = AqQ@Eq+A1QE;
the graded tensor product of A with E.

If xn,m(4) = 3 mau[M] @ (4] then xn,m(B) = 3 mau[A] ® [u'], where ' is
the conjugate partition of p.

Proof: Let I be the T,-ideal of graded identities of A and decompose V, mm as
the direct sum of the S, x Sp-submodules I, s, N.
Since * acts linearly on Vy, ;m we have Vy m = (In,m)* ® N*. As we said above,
(In,m)* = (INVym)* = I* NV, m, hence by Lemma 6 and [4, Lemma 4] we have
Xn,m(B) = Xn,m(N*) = Xn,m(N QF 4)
=) mau A @ W) @ (] @ [(-1)™) = Y ma,[N & (]

by 6.6 of [3]. 1
We are ready to prove

THEOREM 1: Let J be the T;-ideal of graded identities of My 1(E), then
(1) J is generated by y1y2 — y2y1 and 212223 + 232221,
(2) cno(J) =1 and cpm(J) =2" ([_'.;'L]) forn >0, m >0,

3 — n -
© xno(N) =T~ T]

and, for m > 0,
— n—-r —

[n/2)[m/2) ' 1
Xn,m(J) = 2 2 (n+1_2’_):’_—|® : !

r=0 s=0 —r — -8

m—s |:| |1

]
Proof: Let A = Mj(F) with the non-trivial grading 4o, A where

e () e {(2hecr)

then M, 1(F) is isomorphic to the graded tensor product 4o ® Eo + 4; ® E;.
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Therefore (2) and (3) follow from Lemmas 5 and 7. Moreover by Lemma 4 of
[4] J = I*, where I is the T)-ideal of graded identities of A. By definition, I* is
the Tz-ideal generated by all multilinear polynomials f*, with f € I. By Lemma
2, I is generated by y1y2 — y2y1 and 212323 — 232221; hence, as charF = 0, any
multilinear polynomial f of I is a linear combination of the polynomials ag(a; az —
azay )az and bo(by bybs —b3be by )by, where a;, b; are multilinear monomials of F{X}
and moreover a; € Fo, b; € Fy fori =1,2and j =1,2,3.

We remark that if a,b are monomials of F{X}, linear in the disjoint ordered
subsets {zi,,...,zi .}, {zj;,...,2;,} of Z, then (ab)* = (=1)°a*b*, where o is
the permutation (“'.l t;t;:ﬁ‘_“_f'*‘) and #1,t2,...,%,4, are the integers iy,...,1p,
J1s-.-,Js written in increasing order.

Moreover, if r and s are both even then the permutations (t‘ drtegr t'*‘) and

[TRE S5 PRITRY

tln t‘] f‘:‘t”") have the same sign while if r, s, u are odd then the permutations

(tl Tt trtr+1 T tr+atr+a+] e tr+a+u)
il"'irvl ...... vajl ......... ju

and
( t tu+1 tu+,tu+,+1 P tu+‘+r)
JUer Juvpeceeee R TRETERTRT ir

have opposite sign.

This implies that (ag(a1az — azay)as)* = £ak(a}a} — aja})a} and also
(Bo(b1babs — b3baby)bs)* = £5(b7b363 — b36567)6;

which are both in the T,-ideal generated by y1y2 —y2y1 and 232923 4 23222;. This
completes the proof. |

For the next result we need to recall the following definition:
Two P.I.-algebras A, B are equivalent if they satisfy the same polynomial iden-
tities.

As a consequence of Theorem 1 we have
THEOREM 2: M, ;(E) and E @ E are equivalent.

Proof: Let P and Q be the T-ideals of the polynomial identities of M; ;(E) and
EQE respectively. By a result of Popov [5], Q is generated by [z1, z2, [z3, 24], 75]
and [[1,22), 23]. Since these polynomials are identities of M; ;(E) then Q C P.

In order to prove the reverse inclusion, we remark that E ® E is a Z,-graded
algebra with grading 4g = Ey ® Ey + E1 ® Ey, A1 = Ey ® E1 + E; ® Ey. With
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respect to this grading, the polynomials y1y2 — y2y1 and 212223 + 23222, are
graded identities of E @ E.

Therefore, it follows from Theorem 1 that any graded identity of My ;(E) is
also a graded identity of E® E.

Now, let V,, be the space of all multilinear polynomials of degree nin z;,...,z,
and A = A¢ + A; be a Z,-graded algebra.

Let S,T be a partition of {1,2,...,n}, then, as in (2], Is7(A) will be the
subspace of all f(zy,...,2,) € V, which vanish under all substitutions z; —— a;,
with a; € Ay whenever : € S and a; € A; whenever: € T.

As quoted in {2}, since A = Ag + A;, a multilinear polynomial f(zi,...,z5)
will be an identity for A if and only if it vanishes under every homogeneous
substitution; that is f is an identity for A if and only if f(zy,...,zn) € IsT(A)
for every {S,T} partition of {1,2,...,n}.

As we showed above Is (M 1(E)) C Is,7(E @ E), hence we must have P, C
Q@ for all n > 0. Since charF = 0 then P C Q and we are done. |
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