ON THE GRADED IDENTITIES OF *MI,I(E)*

BY

ONOFRIO MARIO DI VINCENZO

Dipartimento di Matematica Universit~ delia Basilicata Via N. Sauro 85, 85100 Potenza, Italy

ABSTRACT

We determine the $S_n \times S_m$ -cocharacter $\chi_{n,m}$ of the algebra $M_{1,1}(E)$ and prove that the T_2 -ideal of its graded identities is generated by the polynomials $y_1 y_2 - y_2 y_1$ and $z_1 z_2 z_3 + z_3 z_2 z_1$.

 \mathbb{Z}_2 -graded algebras and their graded identities have been used in [1] and [4] to study the structure of varieties of associative algebras over a field F of characteristic zero.

In [2], Berele defined a $S_n \times S_m$ -cocharacter $\chi_{n,m}$ for \mathbb{Z}_2 -graded algebras and he related this cocharacter to the ordinary S_{n+m} -cocharacter (for P.I.-algebras).

Moreover, in [7], Regev used these last results to obtain a description of codimensions of the algebras $M_{k,l}(E)$, which play an important role in the theory of P.I.-algebras. More precisely, as proved by Kemer in [2], any non-trivial prime variety is generated by any one of the algebras, $M_n(F)$, $M_n(E)$, $M_{k,l}(E)$ which are defined as follows.

Let A be an algebra over F and let $M_n(A)$ denote the $n \times n$ matrices over A. Let E be the Grassman algebra of a countable dimensional vector space over F . By considering the length of the basis elements of E we have that $E = E_0 \oplus E_1$, where E_0 is the vector space spanned by the elements of even length and E_1 is spanned by the elements of odd length. Given $k, l \geq 0$ we denote by $M_{k,l}(E)$ the following subalgebras of $M_{k+1}(E)$:

$$
M_{k,l}(E) = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \middle| \begin{array}{l} A \in M_k(E_0), D \in M_l(E_0), B, C \text{ are respectively} \\ k \times l \text{ and } l \times k \text{ matrices, both with entries in } E_1 \end{array} \right\}.
$$

Received June 5, 1991 and in revised form August 1, 1991

In this paper we will determine the $S_n \times S_m$ -cocharacter $\chi_{n,m}$ of the algebra $M_{1,1}(E)$ and prove that the T_2 -ideal of its graded identities is generated by the polynomials $[y_1, y_2] = y_1y_2 - y_2y_1$ and $z_1z_2z_3 + z_3z_2z_1$.

As a consequence of our theorem and using a result of Popov [5], we show that $M_{1,1}(E)$ is equivalent to $E \otimes E$, that is they satisfy the same polynomial identities.

We remark that this last result was obtained by Kemer in [4], as a consequence of his structure theory for varieties of algebras, but our proof does not make use of the above structure theory (another proof of this result is contained in [8]).

Definitions and preliminary results

Following the definitions of Kemer, an algebra A is \mathbb{Z}_2 -graded if $A = A_0 + A_1$, where A_0 , A_1 are subspaces of A satisfying:

$$
A_0A_0+A_1A_1\subseteq A_0 \text{ and } A_0A_1+A_1A_0\subseteq A_1.
$$

Now, let $F{X}$ be the free algebra over the field F generated by a countable set X. As in [4] we represent X in the form $X = Y \cup Z$ where Y and Z are countable disjoint subsets of X .

 \mathcal{F}_0 will denote the subspace of $F{X}$ generated by the monomials of even degree with respect to Z; similarly \mathcal{F}_1 will denote the subspace of $F\{X\}$ generated by the monomials of odd degree with respect to Z .

An ideal I of $F\{X\}$ is a T_2 -ideal if it is invariant under all F-endomorphisms η of $F\{X\}$ such that $\eta(F_0) \subseteq \mathcal{F}_0$ and $\eta(F_1) \subseteq \mathcal{F}_1$.

A polynomial $f(y_1,\ldots,y_n,z_1,\ldots,z_m)$ is a graded identity of a \mathbb{Z}_2 -graded algebra $A = A_0 + A_1$ if $f(a_1, ..., a_n, b_1, ..., b_m) = 0$ for all $a_1, ..., a_n \in A_0$ and $b_1,\ldots,b_m\in A_1.$

The set $I = T_2(A)$ of all graded identities of A is a T_2 -ideal of $F\{X\}$.

Let $V_{n,m}$ be the space of all multilinear polynomials of degree $n + m$ in the variables $y_1, \ldots, y_n, z_1, \ldots, z_m$ and let for a T_2 -ideal $I, I_{n,m} = I \cap V_{n,m}$. Clearly, $I_{n,m}$ becomes a $S_n \times S_m$ -submodule of $V_{n,m}$ if, as usually, we define

$$
(\sigma,\pi)f(y_1,\ldots,y_n,z_1,\ldots,z_m)=f(y_{\sigma(1)},\ldots,y_{\sigma(n)},z_{\pi(1)},\ldots,z_{\pi(m)}),
$$

for all $(\sigma,\pi) \in S_n \times S_m$ and $f(y_1,\ldots,y_n,z_1,\ldots,z_m) \in V_{n,m}$.

We denote by $\chi_{n,m}(I)$ ($\chi_{m,n}(A)$) the $S_n \times S_m$ -character of the quotient module $V_{n,m}/I_{n,m}$, and by $c_{n,m}(I)$ $(c_{n,m}(A))$ its dimension over F.

It follows from the theory of representations of the symmetric group that

$$
\chi_{n,m}(I)=\chi_{n,m}(A)=\sum_{\substack{\lambda\vdash n\\ \mu\vdash m}}m_{\lambda,\mu}[\lambda]\otimes[\mu],
$$

where $[\lambda] \otimes [\mu]$ denotes the irreducible $S_n \times S_m$ -character given by the tensor product of the irreducible characters $[\lambda], [\mu]$ corresponding to the partitions λ, μ of n and m respectively (see $[3]$).

Moreover, $m_{\lambda,\mu}\neq 0$ if and only if there exist a λ -tableau T_1 , a μ -tableau T_2 and some monomial $M(y_1,..., y_n, z_1,..., z_m)$ of $V_{n,m}$ such that the polynomial $e_{T_1}e_{T_2}M(y_1,\ldots,y_n,z_1,\ldots,z_m)$ is not a graded identity of A.

Here e_{T_i} ($i = 1, 2$) denotes the essential idempotent element of FS_n (FS_m) given by $e_{T_i} = \sum_{\sigma \in R_{T_i}} \sum_{\pi \in C_{T_i}} (-1)^{\pi} \sigma \pi$, where R_{T_i} , C_{T_i} are the subgroups of S_n (S_m) fixing respectively the rows and the columns of T_i .

The graded identities of $M_2(F)$

We consider the algebra $A = M_2(F)$ with the non-trivial grading

$$
A_0=\left\{\begin{pmatrix}a&0\\0&d\end{pmatrix}\bigg|a,d\in F\right\},\quad A_1=\left\{\begin{pmatrix}0&b\\c&0\end{pmatrix}\bigg|b,c\in F\right\},\quad
$$

and let I be the T_2 -ideal of its graded identities.

We start by considering a suitable subset of $V_{n,m}$ which leads to a basis of $V_{n,m}/I_{n,m}$. More precisely we have the following definition.

Definition 1: For $m > 0$, let $(j) = \{j_1, j_2, \ldots, j_{\lfloor m/2 \rfloor}\}$ be a subset of $\{1, \ldots, m\}$ of order $[m/2]$ and let $(i) = \{i_1, i_2, \ldots\}$ be its complement in $\{1, \ldots, m\}$. Moreover, for $q = 0, 1, ..., n$ let $(t) = \{t_1, ..., t_q\}$ be a subset of $\{1, ..., n\}$ of order q, and let $(s) = \{s_1, s_2,...\}$ be its complement in $\{1,...,n\}.$

We separately write in increasing order all integers occurring in the distinct sets (i) , (j) , (t) , (s) and we put

$$
M_{(t),(j)} = M_{(t),(j)}(y_1,\ldots,y_n,z_1,\ldots,z_m)
$$

=
$$
\begin{cases} y_{t_1}y_{t_2}\cdots y_{t_q}z_{i_1}y_{s_1}\cdots y_{s_{n-q}}z_{j_1}z_{i_2}z_{j_2}\cdots z_{i_{\lfloor m/2\rfloor}}z_{j_{\lfloor m/2\rfloor}} & m \text{ even} \\ y_{t_1}y_{t_2}\cdots y_{t_q}z_{i_1}y_{s_1}\cdots y_{s_{n-q}}z_{j_1}z_{i_2}z_{j_2}\cdots z_{i_{\lfloor m/2\rfloor+1}} & m \text{ odd} \end{cases}
$$

We have:

LEMMA 1: The $2^n {m \choose {\lceil \frac{m}{n} \rceil}}$ monomials $M_{(t),(j)}$ are linearly independent modulo $I_{n,m}$.

Proof: We assume m even (the proof of the odd case is very similar). Let $\{e_{11}, e_{12}, e_{21}, e_{22}\}$ be the standard basis of $M_2(F)$ and

$$
z_i \longmapsto \bar{z}_i = a_i e_{12} + b_i e_{21}, \qquad y_i \longmapsto \bar{y}_i = \alpha_i e_{11} + \beta_i e_{22}
$$

be the most general graded substitution.

For each monomial, we have

$$
M_{(i),(j)}(\bar{y}_1,\ldots,\bar{y}_n,\bar{z}_1,\ldots,\bar{z}_m) =
$$

\n
$$
\alpha_{t_1}\cdots\alpha_{t_r}\beta_{s_1}\cdots\beta_{s_{n-r}}a_{i_1}b_{j_1}a_{i_2}b_{j_2}\cdots a_{i_{\lfloor m/2\rfloor}}b_{j_{\lfloor m/2\rfloor}}e_{11}
$$

\n
$$
+ \beta_{t_1}\cdots\beta_{t_r}\alpha_{s_1}\cdots\alpha_{s_{n-r}}b_{i_1}a_{j_1}b_{i_2}a_{j_2}\cdots b_{i_{\lfloor m/2\rfloor}}a_{j_{\lfloor m/2\rfloor}}e_{22}.
$$

Let $f = \sum_{(t),(j)} A_{(t),(j)} M_{(t),(j)}(y_1,\ldots,y_n,z_1,\ldots,z_m)$ be a graded identity of $M_2(F)$; for a fixed $(j) = \{j_1, j_2, \ldots\}$ we specialize in the substitution

$$
a_{i_1}=\cdots=a_{i_{[m/2]}}=b_{j_1}=\cdots=b_{j_{[m/2]}}=1
$$

and

$$
b_{i_1}=\cdots=b_{i_{[m/2]}}=a_{j_1}=\cdots=a_{j_{[m/2]}}=0.
$$

Hence, for all $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \in F$, we have

$$
0=f(\bar{y}_1,\ldots,\bar{y}_n,\bar{z}_1,\ldots,\bar{z}_m)=\sum_{(t)}A_{(t),(j)}\alpha_{t_1}\cdots\alpha_{t_q}\beta_{s_1}\cdots\beta_{s_{n-q}}e_{11}.
$$

Since the characteristic of F is zero it follows that $A_{(t),(j)} = 0$ for all (t) , and this proves the Lemma. |

Now we can prove our first result about the graded identities of $M_2(F)$.

LEMMA 2: *I is the T₂-ideal generated by* $y_1y_2 - y_2y_1$ *and* $z_1z_2z_3 - z_3z_2z_1$ *. More*over $c_{n,0}(I) = 1$ and $c_{n,m}(I) = 2^n \left(\frac{m}{\lfloor \frac{m}{2} \rfloor}\right)$ for $n \ge 0, m > 0$.

Proof: Let J be the T_2 -ideal of $F\{X\}$ generated by $y_1y_2 - y_2y_1$ and $z_1z_2z_3$ $z_3z_2z_1$. Since these polynomials are graded identities of $M_2(F)$ it follows that $J \subseteq I$, and so $c_{n,m}(J) \ge c_{n,m}(I)$, for all $n, m \ge 0$.

We remark that $I_{n,0} = J_{n,0}$ as A_0 is commutative and non-nilpotent. Therefore $V_{n,0}/I_{n,0}$ is the one-dimensional S_n module with character $[(n)]$.

Now we assume $m > 0$.

Vol. 80, 1992 GRADED IDENTITIES 327

Since J is a T_2 -ideal then $y_iM - My_i \in J$, for each monomial M having even degree in the z_j 's. This implies that $V_{n,m}$ is spanned modulo $J_{n,m}$ by the monomials $u_0(y)z_{i_1}u_1(y)z_{i_2}\cdots z_{i_m}$, where $u_0(y)$ and $u_1(y)$ are monomials (eventually 1) in y_1, \ldots, y_n in which the y_i 's occur in increasing order.

Now we consider the right action of the symmetric group S_m on the vector space $V_{0,m}$ of all multilinear polynomials in z_1, \ldots, z_m . This action is defined as follows:

$$
(z_{i_1}\cdots z_{i_m})\sigma^{-1}=z_{i_{\sigma}(1)}\cdots z_{i_{\sigma(m)}},
$$

that is σ acts on the monomial $M = M(z_1, \ldots, z_m)$ by changing the order of the *zi's.* Hence the polynomials

$$
z_{t_1}\cdots z_{t_m}(1-(i,i+2))=z_{t_1}\cdots z_{t_i}z_{t_{i+1}}z_{t_{i+2}}\cdots z_{t_m}-z_{t_1}\cdots z_{t_{i+2}}z_{t_{i+1}}z_{t_i}\cdots z_{t_m}
$$

are in the T_2 -ideal J, and so $z_{t_1} \cdots z_{t_m} \equiv z_{t_1} \cdots z_{t_m} (i, i + 2) \text{ mod. } J$, for all i.

Let G be the subgroup of S_m generated by the involutions $(i, i + 2)$, with $i = 1, ..., m-2$, then $z_{t_1} \cdots z_{t_m} g \equiv z_{t_1} \cdots z_{t_m} \mod J$, for all $g \in G$. Since G is the direct product of the symmetric groups G_1 and G_2 acting respectively on odd and even digits, then, for each monomial $M = M(z_1, \ldots, z_m)$ of $V_{0,m}$, we can apply a suitable $g \in G$ and separately write the z_i 's occurring in the even and odd position in M in increasing order; moreover $M - Mg \in J$.

Since J is a T_2 -ideal, it follows from the previous argument that $V_{n,m}$ is spanned modulo $J_{n,m}$ by the monomials $M_{(t),(j)}$ which were defined above. Therefore $c_{n,m}(J) \leq 2^n {m \choose \left[\frac{m}{2}\right]}$.

On the other hand by Lemma 1, $2^n \binom{m}{\lfloor \frac{m}{2} \rfloor} \leq c_{n,m}(I)$. This inequality together with the previous implies

$$
c_{n,m}(I)=c_{n,m}(J)=2^n\left(\frac{m}{\left[\frac{m}{2}\right]}\right)
$$

and moreover, as $J \subseteq I$, $I_{n,m} = J_{n,m}$ for all $n, m \ge 0$. Since I and J are T_2 -ideals of $F\{X\}$ and char. $F = 0$, this suffices to conclude the proof.

We remark that this last result together with Lemma 1 shows that the set ${M(t), (j) + I_{n,m}}$ is a basis of $V_{n,m}/I_{n,m}$ for all $n \geq 0$ and $m > 0$.

Next we will examine more closely the $S_n \times S_m$ -structure of $V_{n,m}/I_{n,m}$.

Let q be a fixed integer with $0 \le q \le n$, assume $m > 0$; and let W_q be the $S_n \times S_m$ -submodule of $V_{n,m}/I_{n,m}$ generated by $y_1 \cdots y_q z_1 y_{q+1} \cdots y_n z_2 z_3 \cdots z_m +$ $I_{n,m}.$

We identify the characters $[\lambda],[\mu]$ associated to the partitions λ,μ with the corresponding Young diagrams; with this notation we have

LEMMA 3: For all s,t with $0 \le t \le q^* = \min\{q, n-q\}$ and $0 \le s \le [m/2]$, the *irreducible* $S_n \times S_m$ -character

is a component of $\chi_{n,m}(W_q)$.

Proof: In order to prove the Lemma it suffices to exhibit for each couple of diagrams

a couple of tableaux T_1, T_2 such that the corresponding element

$$
(e_{T_1}e_{T_2})y_1\cdots y_qz_1y_{q+1}\cdots y_nz_2z_3\cdots z_m \text{ of } V_{n,m}
$$

is not a graded identity of $M_2(F)$ (see introduction).

This is obtained in the following manner.

Suppose, for simplicity of notations, $q^* = q$ and m even (all other cases can be treated in a similar way). For $t \leq q$, $s \leq [m/2]$ we consider the following Young tableaux

$$
T_1 = \frac{\overbrace{q+1|q+2|\cdots q+t|t+1|\cdots|q|q+t+1|\cdots|n}^{n-t}}{\underline{1\quad2\cdots t}\underline{t}} \\
T_2 = \frac{\overbrace{\left[\frac{1}{2}\right]^{3}\cdots\left[\frac{2s-1}{2s+1}\right]\cdots\left[\frac{m}{2s}\right]}^{m-s}}_{\underline{2\cdot 4\cdot \cdots \cdot 2s}}
$$

and let $R^{T_i} = \sum_{\sigma \in R_{\tau_i}} \sigma$, C^{T_i} $=\sum_{\pi \in C_{\mathcal{T}}}(1)^{\pi} \pi$, for $i = 1,2$.

Let

$$
M = M(y, z) = y_1 \cdots y_q z_1 y_{q+1} \cdots y_n z_2 z_3 \cdots z_m,
$$

\n
$$
M_1 = M_1(y, z) = y_1 \cdots y_q z_1 y_{q+1} \cdots y_n z_2,
$$

\n
$$
M_2 = M_2(y, z) = y_1 \cdots y_q z_2 y_{q+1} \cdots y_n z_1,
$$

Vol. 80, 1992

and

$$
f(z)=[z_3,z_4]\cdots [z_{2s-1},z_{2s}]z_{2s+1}\cdots z_m,
$$

then

$$
e_{T_1}e_{T_2}M=R^{T_1}R^{T_2}C^{T_1}C^{T_2}M,
$$

moreover

$$
C^{T_2}M = M_1(y,z)f(z) - M_2(y,z)f(z).
$$

Now let $\pi \in C_{T_1}$ and let $(i) = \{i_1, \ldots, i_r\} \subseteq \{1, \ldots, t\}$ be the ordered set of integers of the second row of T_1 which are moved by π ; that is

$$
\pi = (i_1, q + i_1)(i_2, q + i_2) \cdots (i_r, q + i_r).
$$

Then $(-1)^{\pi} \pi M_1(y, z) f(z)$ is congruent modulo $I_{n,m}$ to

$$
(-1)^{r} y_{j_1} \cdots y_{j_v} y_{t+1} \cdots y_q y_{q+i_1} \cdots y_{q+i_r} z_1 y_{i_1} \cdots y_i,
$$

$$
y_{q+j_1} \cdots y_{q+j_v} y_{q+i+1} \cdots y_n z_2 f(z)
$$

where $\{j_1,...,j_v\} = \{1,...,t\} - \{i_1,...,i_r\}$ and $j_1 < \cdots < j_v$; in the same way $(-1)^{\pi} \pi M_2(y, z) f(z)$ is congruent modulo $I_{n,m}$ to

$$
(-1)^{r}y_{j_{1}}\cdots y_{j_{v}}y_{t+1}\cdots y_{q}y_{q+i_{1}}\cdots y_{q+i_{r}}z_{2}y_{i_{1}}\cdots y_{i_{r}}
$$

$$
y_{q+j_{1}}\cdots y_{q+j_{v}}y_{q+t+1}\cdots y_{n}z_{1}f(z).
$$

Hence $C^{T_1}C^{T_2}M = C^{T_1}(M_1 - M_2)f(z)$ is congruent, modulo $I_{n,m}$, to

$$
g(y_1, \ldots, y_n, z_1, \ldots, z_m) = \sum_{r=0}^t \sum_{1 \leq i_1 < \cdots < i_r \leq t} (-1)^r
$$

$$
((y_{j_1} \cdots y_{j_v} y_{t+1} \cdots y_q y_{q+i_1} \cdots y_{q+i_r} z_1 y_{i_1} \cdots y_i, y_{q+j_1} \cdots y_{q+j_v} y_{q+t+1} \cdots y_n z_2)
$$

$$
-(y_{j_1} \cdots y_{j_v} y_{t+1} \cdots y_q y_{q+i_1} \cdots y_{q+i_r} z_2 y_{i_1} \cdots y_i, y_{q+j_1} \cdots y_{q+j_v} y_{q+t+1} \cdots y_n z_1))
$$

$$
\cdot f(z)
$$

where, as above,

$$
\{j_1,\ldots,j_v\}=\{1,\ldots,t\}-\{i_1,\ldots,i_r\}\text{ and }j_1<\cdots
$$

Now in $g(y_1,...,y_n,z_1,...,z_m)$ we identify $y_1 = y_2 = \cdots = y_t$, $y_{t+1} = y_{t+2}$ $\cdots = y_n$, $z_2 = z_4 = \cdots = z_{2s}$ and also $z_1 = z_3 = \cdots = z_{2s-1} = z_{2s+1} = z_{2s+2}$ $\cdots=z_m.$

In this way we obtain the polynomial

$$
g_{T_1,T_2}(y_1,y_{t+1},z_1,z_2)=\sum_{r=0}^t {t \choose r} (-1)^r (y_1^{t-r}y_{t+1}^{q+r-t}z_1y_1^ry_{t+1}^{n-q-r}z_2
$$

$$
-y_1^{t-r}y_{t+1}^{q+r-t}z_2y_1^ry_{t+1}^{n-q-r}z_1)[z_1,z_2]^{s-1}z_1^{m-2s}.
$$

A standard argument shows that

$$
g_{T_1,T_2}(y_1,y_{t+1},z_1,z_2) \in I \Leftrightarrow (e_{T_1}e_{T_2})y_1\cdots y_qz_1y_{q+1}\cdots y_nz_2z_3\cdots z_m \in I_{n,m}
$$

(see $[6,$ sections 1,3] for details).

Let $y_1 \mapsto \bar{y}_1 = \alpha_1 e_{11} + \beta_1 e_{22}$, $y_{t+1} \mapsto \bar{y}_{t+1} = \alpha_2 e_{11} + \beta_2 e_{22}$, $z_i \mapsto \bar{z}_i$ be a graded substitution of the variables with elements of $M_2(F)$. One has

$$
g_{T_1,T_2}(\bar{y}_1,y_{t+1},\bar{z}_1,\bar{z}_2)=\sum_{r=0}^t \binom{t}{r} (-1)^r (\alpha_1^{t-r} \alpha_2^{q+r-t} \beta_1^r \beta_2^{n-q-r} e_{11} + \beta_1^{t-r} \beta_2^{q+r-t} \alpha_1^r \alpha_2^{n-q-r} e_{22}) \cdot [\bar{z}_1,\bar{z}_2]^s \bar{z}_1^{m-2s}.
$$

If $\bar{z}_1 = e_{12} + e_{21}$ and $\bar{z}_2 = e_{21}$, then $[\bar{z}_1, \bar{z}_2]^s \bar{z}_1^{m-2s}$ is an invertible matrix of $M_2(F)$, hence $g_{T_1, T_2}(\bar{y}_1, \bar{y}_{t+1}, \bar{z}_1, \bar{z}_2) = 0$ implies

$$
\sum_{r=0}^t \binom{t}{r} (-1)^r \alpha_1^{t-r} \alpha_2^{q+r-t} \beta_1^r \beta_2^{n-q-r} = 0 \quad \text{for all } \alpha_i, \beta_i \in F.
$$

Since char $F = 0$ this is impossible. Hence

$$
g_{T_1,T_2}(y_1,y_{t+1},z_1,z_2) \not\in I
$$

and this completes the proof. \blacksquare

LEMMA 4:

$$
\chi_{n,m}(W_q) = \sum_{t=0}^{q^*} \sum_{s=0}^{[m/2]} \underbrace{\overbrace{\qquad \qquad }^{ \leftarrow} \quad n-t \rightarrow}_{ \leftarrow t \rightarrow} \otimes \underbrace{\qquad \qquad }^{ \leftarrow} \quad m-s \rightarrow}{\qquad \qquad }^{ \leftarrow}
$$

where $q^* = \min\{q, n - q\}.$

Proof. Let d be the degree of the $S_n \times S_m$ -representation associated to

.-- n-t ~ ~ m-s EE I t **,** J @ I **t=O** a=O

By the hook formula (see [3]) the dimension of the irreducible representation associated to Young diagram

is $\binom{N+1}{R} \left(1 - \frac{2R}{N+1}\right)$.

Now by an easy induction on p we have $\sum_{R=0}^{p} {N+1 \choose R} \left(1 - \frac{2R}{N+1}\right) = {N \choose p}$ for all $p=0,\ldots,N;$ and so $d={\binom{n}{q^*}}{\binom{m}{\lceil m/2 \rceil}}.$

On the other hand W_q is spanned over F by the elements

$$
y_{\sigma(1)}\cdots y_{\sigma(q)}z_{\pi(1)}y_{\sigma(q+1)}\cdots y_{\sigma(n)}z_{\pi(2)}\cdots z_{\pi(m)}+I_{n,m}, \qquad (\sigma,\pi)\in S_n\times S_m.
$$

Moreover, as shown in the proof of Lemma 2, each of these is equal to one of the elements $M_{(t),(j)}(y_1,...,y_n,z_1,...,z_m) + I_{n,m}$, with $(t) = \{t_1,...,t_q\}$ and q is fixed.

Since $M_{(t),(j)}(y_1,...,y_n,z_1,...,z_m) + I_{n,m}$ are in the basis of $V_{n,m}/I_{n,m}$ then $\dim W_q = \binom{n}{q} \binom{m}{\lfloor m/2 \rfloor}$; moreover, since $\binom{n}{q} = \binom{n}{n-q}$ and $q^* = \min\{q, n-q\}$, one has dim $W_q = d$.

Therefore the result follows by Lemma 3. |

Notice that the basis of $V_{n,m}/I_{n,m}$ given in the proof of Lemma 1 and Lemma 2 splits in the basis of the submodules W_q which we defined above, for $q =$ $0,1,\ldots,n;$ therefore $V_{n,m}/I_{n,m}=\bigoplus W_q$ and we have:

LEMMA 5: Let $A = M_2(F)$ with the non-trivial grading. Then

$$
\chi_{n,0}(A)=\begin{array}{|c|}\n\hline\n\cdots\n\end{array}
$$

and, for $m > 0$,

$$
\chi_{n,m}(A) = \sum_{r=0}^{\lfloor n/2\rfloor} \sum_{s=0}^{\lfloor m/2\rfloor} (n+1-2r) \underbrace{\xleftarrow{+n-r \rightarrow} \rightarrow +m-s \rightarrow}{\underbrace{\xleftarrow{+n-s \rightarrow}}}_{\leftarrow s \rightarrow}
$$

Proof: Let *I* be the T_2 -ideal of graded identities of A. As we said above $V_{n,0}/I_{n,0}$ is the one-dimensional S_n -module with character

$$
\begin{array}{|c|c|}\n\hline\n\hline\n\end{array}
$$

while for $m > 0$, $V_{n,m}/I_{n,m} = \bigoplus W_q$. Hence by Lemma 4

$$
\chi_{n,m}(A) = \sum_{q=0}^{n} \sum_{t=0}^{q^*} \sum_{s=0}^{[m/2]} \frac{\stackrel{\leftarrow}{\longleftarrow} n-t \rightarrow}{\stackrel{\leftarrow}{\longleftarrow} \otimes \cdots \rightarrow}
$$

where $q^* = \min\{q, n - q\}.$

Now for a fixed r, with $0 \le r \le [n/2]$, there exist precisely $(n + 1 - 2r)$ values of q, with $0 \le q \le n$, such that $r \le \min\{q, n-q\}$, namely $q = r, r+1, \ldots, n-r$.

Thus, for $m > 0$, one has

The graded identities of $M_{1,1}(E)$

First we recall some results of [4] in order to prove our main result about $M_{1,1}(E)$.

Let $A = A_0 + A_1$ be a Z₂-graded algebra, and let I_1 be the T_2 -ideal of its graded identities. In [4, Lemmas 1, 4] it is proved that the T_2 -ideal I_2 associated to the \mathbb{Z}_2 -graded algebra $B = A_0 \otimes E_0 + A_1 \otimes E_1$ satisfies the condition $I_2 = I_1^*$, where $*$ is defined as in [4, p.362].

Moreover, for all $n, m \geq 0$, one has $I_2 \cap V_{n,m} = (I_1 \cap V_{n,m})^*$, and $*$ acts linearly on $V_{n,m}$ in the following way:

Let $M = M(y_1, \ldots, y_n, z_1, \ldots, z_m)$ be a monomial in $V_{n,m}$. Denote the order in which the z_i 's occur in M by $z_{i_1}, z_{i_2}, \ldots, z_{i_m}$. Then $M^* = (-1)^{\pi}M$ where π is the permutation $\binom{1...m}{i_1\cdots i_m}$.

We have

LEMMA 6: Let Δ be the one-dimensional $S_n \times S_m$ -module which affords the $S_n \times S_m$ -representation given by $(\sigma, \tau) \mapsto (-1)^r$. Then for every $S_n \times S_m$ *-submodule N of* $V_{n,m}$ we have

- (i) N^* is a $S_n \times S_m$ -submodule of $V_{n,m}$,
- (ii) $N^* \cong N \otimes_F \Delta$.

Proof: By the definition of the action of $*$ on $V_{n,m}$ it follows that $((\sigma, \tau)M)^* =$ $(-1)^{\tau}(\sigma, \tau) \cdot M^*$, for all $(\sigma, \tau) \in S_n \times S_m$ and for all monomials M of $V_{n,m}$. Since $*$ acts linearly on $V_{n,m}$ this implies the result.

As a consequence we obtain (see also [2, Lemma 6])

LEMMA 7: Let $A = A_0 + A_1$ be a \mathbb{Z}_2 -graded algebra, and let $B = A_0 \otimes E_0 + A_1 \otimes E_1$ *the graded tensor product of A with E.*

If $\chi_{n,m}(A) = \sum_{\mu} m_{\lambda,\mu}[\lambda] \otimes [\mu]$ *then* $\chi_{n,m}(B) = \sum_{\mu} m_{\lambda,\mu}[\lambda] \otimes [\mu']$, where μ' is the conjugate partition of μ .

Proof: Let I be the T_2 -ideal of graded identities of A and decompose $V_{n,m}$ as the direct sum of the $S_n \times S_m$ -submodules $I_{n,m}$, N.

Since $*$ acts linearly on $V_{n,m}$ we have $V_{n,m} = (I_{n,m})^* \oplus N^*$. As we said above, $(I_{n,m})^* = (I \cap V_{n,m})^* = I^* \cap V_{n,m}$, hence by Lemma 6 and [4, Lemma 4] we have

$$
\chi_{n,m}(B) = \chi_{n,m}(N^*) = \chi_{n,m}(N \otimes_F \Delta)
$$

=
$$
\left(\sum m_{\lambda,\mu}[\lambda] \otimes [\mu]\right) \otimes \left(\left[(n)\right] \otimes \left[(-1)^m\right]\right) = \sum m_{\lambda,\mu}[\lambda] \otimes [\mu']
$$

by 6.6 of [3]. \Box

We are ready to prove

THEOREM 1: Let *J* be the T_2 -ideal of graded identities of $M_{1,1}(E)$, then

- (1) *J* is generated by $y_1y_2 y_2y_1$ and $z_1z_2z_3 + z_3z_2z_1$,
- (2) $c_{n,0}(J) = 1$ and $c_{n,m}(J) = 2^n \left(\frac{m}{\lfloor \frac{m}{2} \rfloor}\right)$ for $n \ge 0, m > 0$,

$$
\chi_{n,0}(J)=\begin{array}{|c|}\n\hline\n\cdots \\
\hline\n\cdots\n\end{array}
$$

and, for $m > 0$,

~-- n--r ,-+ *[n/2][m/2]* 2r)] "'"]®] *x.,m(a) = E E (. + 1- "" I* r=0 **s~O** 4-- r --+ m-3 **l tT** ^S

Proof: Let $A = M_2(F)$ with the non-trivial grading A_0, A_1 where

$$
A_0=\left\{\begin{pmatrix}a&0\\0&d\end{pmatrix}\big|a,d\in F\right\},\quad A_1=\left\{\begin{pmatrix}0&b\\c&0\end{pmatrix}\big|b,c\in F\right\};
$$

then $M_{1,1}(E)$ is isomorphic to the graded tensor product $A_0 \otimes E_0 + A_1 \otimes E_1$.

334 O. M. DI VINCENZO Isr. J. Math.

Therefore (2) and (3) follow from Lemmas 5 and 7. Moreover by Lemma 4 of [4] $J = I^*$, where I is the T_2 -ideal of graded identities of A. By definition, I^{*} is the T₂-ideal generated by all multilinear polynomials f^* , with $f \in I$. By Lemma 2, I is generated by $y_1y_2 - y_2y_1$ and $z_1z_2z_3 - z_3z_2z_1$; hence, as char $F = 0$, any multilinear polynomial f of I is a linear combination of the polynomials $a_0 (a_1 a_2$ $a_2 a_1) a_3$ and $b_0 (b_1 b_2 b_3 - b_3 b_2 b_1) b_4$, where a_i, b_j are multilinear monomials of $F\{X\}$ and moreover $a_i \in \mathcal{F}_0$, $b_j \in \mathcal{F}_1$ for $i=1,2$ and $j=1,2,3$.

We remark that if a, b are monomials of $F\{X\}$, linear in the disjoint ordered subsets $\{z_{i_1},...,z_{i_r}\}, \{z_{j_1},...,z_{j_s}\}$ of Z, then $(ab)^* = (-1)^{\sigma} a^* b^*$, where σ is the permutation $\binom{t_1\cdots t_r t_{r+1}\cdots t_{r+s}}{i_1\cdots i_r j_1\cdots j_s}$ and $t_1, t_2, \ldots, t_{r+s}$ are the integers i_1, \ldots, i_r , j_1, \ldots, j_s written in increasing order.

Moreover, if r and s are both even then the permutations $\binom{r_1 \cdots r_r r_{r+1} \cdots r_{r+s}}{i_1 \cdots i_r j_1 \cdots j_s}$ and $\binom{t_1\cdots t_s t_{s+1}\cdots t_{r+s}}{j_1\cdots j_s i_j\cdots j_s}$ have the same sign while if r, s, u are odd then the permutations

$$
\binom{t_1\cdots t_rt_{r+1}\cdots t_{r+s}t_{r+s+1}\cdots t_{r+s+u}}{i_1\cdots i_r v_1\cdots\cdots v_sj_1\cdots\cdots\cdots j_u}
$$

and

$$
\binom{t_1\cdots t_{u}t_{u+1}\cdots t_{u+s}t_{u+s+1}\cdots t_{u+s+r}}{j_1\cdots j_{u}v_1\cdots\cdots v_{s}i_1\cdots\cdots\cdots i_r}
$$

have opposite sign.

This implies that $(a_0(a_1a_2 - a_2a_1)a_3)^* = \pm a_0^*(a_1^*a_2^* - a_2^*a_1^*)a_2^*$ and also

$$
(b_0(b_1b_2b_3-b_3b_2b_1)b_4)^* = \pm b_0^*(b_1^*b_2^*b_3^* - b_3^*b_2^*b_1^*)b_4^*
$$

which are both in the T_2 -ideal generated by $y_1y_2 - y_2y_1$ and $z_1z_2z_3 + z_3z_2z_1$. This completes the proof.

For the next result we need to recall the following definition:

Two P.I.-algebras A, B are equivalent if they satisfy the same polynomial identities.

As a consequence of Theorem 1 we have

THEOREM 2: $M_{1,1}(E)$ and $E \otimes E$ are equivalent.

Proof. Let P and Q be the T-ideals of the polynomial identities of $M_{1,1}(E)$ and $E \otimes E$ respectively. By a result of Popov [5], Q is generated by $[x_1, x_2, [x_3, x_4], x_5]$ and $[[x_1, x_2], x_2^2]$. Since these polynomials are identities of $M_{1,1}(E)$ then $Q \subseteq P$.

In order to prove the reverse inclusion, we remark that $E \otimes E$ is a \mathbb{Z}_2 -graded algebra with grading $A_0 = E_0 \otimes E_0 + E_1 \otimes E_1$, $A_1 = E_0 \otimes E_1 + E_1 \otimes E_0$. With

Therefore, it follows from Theorem 1 that any graded identity of $M_{1,1}(E)$ is also a graded identity of $E \otimes E$.

Now, let V_n be the space of all multilinear polynomials of degree n in x_1, \ldots, x_n and $A = A_0 + A_1$ be a Z₂-graded algebra.

Let *S*, *T* be a partition of $\{1, 2, ..., n\}$, then, as in [2], $I_{S,T}(A)$ will be the subspace of all $f(x_1,...,x_n) \in V_n$ which vanish under all substitutions $x_i \mapsto a_i$, with $a_i \in A_0$ whenever $i \in S$ and $a_i \in A_1$ whenever $i \in T$.

As quoted in [2], since $A = A_0 + A_1$, a multilinear polynomial $f(x_1,...,x_n)$ will be an identity for A if and only if it vanishes under every homogeneous substitution; that is f is an identity for A if and only if $f(x_1, \ldots, x_n) \in I_{S,T}(A)$ for every $\{S, T\}$ partition of $\{1, 2, \ldots, n\}$.

As we showed above $I_{S,T}(M_{1,1}(E)) \subseteq I_{S,T}(E \otimes E)$, hence we must have $P_n \subseteq$ Q_n for all $n \geq 0$. Since char $F = 0$ then $P \subseteq Q$ and we are done.

References

- [1] A. Berele, Magnum *P.I.,* Isr. J. Math. 51 (1985), 13-19.
- [2] A. Berele, *Cocharacters of Z/2Z-graded* algebras, Isr. J. Math. 61 (1988), 225-234.
- [3] G. D. James, *The representation theory of the symmetric* group, Lecture Notes in Mathematics **628, Springer, Berlin,** 1978.
- [4] A. R. Kemer, Varieties and *Z2-graded* algebras, Math. USSR. Izv. 25 (1985), 359- 374.
- [5] A. P. Popov, *Identities of the tensor square of the Grassmann algebra,* Algebra and Logic 21 (1983), 293-316.
- [6] A. Regev, *The polynomial identities of matrices in characteristic* zero, Commun. Algebra **8 (1980),** 1417-1467.
- [7] A. Regev, *On the identities of subalgebras of matrices over the Grassmann algebra,* Isr. J. Math. 58 (1987), 351-369.
- [8] A. Regev, Tensor *product of matrix* a/gebras over *the* Grassmann algebra, J. Algebra 133 (1990), 351-369.